

Abstract

A rational map $\gamma: \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ from the Riemann Sphere to itself is said to be a Lattès Map if there are "well-behaved" maps $\phi: E(\mathbb{C}) \to \mathbb{C}$ $\mathbb{P}^1(\mathbb{C})$ and $\psi : E(\mathbb{C}) \to E(\mathbb{C})$ such that $\gamma \circ \phi = \phi \circ \psi$. We are interested in those Lattès Maps which are also Belyĭ Maps and their associated monodromy groups. This work is conducted as part of the Pomona Research in Mathematics Experience (DMS-2113782).

Elliptic Curves

- An elliptic curve is an equation of the form $y^2 = x^3 + Ax + B$ where $4A^3 + 27B^2 \neq 0$. Equivalently, it is a non-singular curve of genus one.
- Let $S = E(\mathbb{C})$ be the collection of complex numbers x_0 and y_0 satisfying $y^2 = x^3 + Ax + B$ along with the "point at infinity" O_E . This is a torus. In particular, it is a compact, connected Riemann surface.
- Let P, Q, and P * Q be points on E which lie on a line. Then the binary operation $P \oplus Q = (P * Q) * O_E$ turns $(E(\mathbb{C}), \oplus)$ into an abelian group.

Belyĭ Lattès Maps

- A Belyĭ map $\phi: S \to \mathbb{P}^1(\mathbb{C})$ is a meromorphic function defined on a compact, connected Riemann surface S which is ramified over at most three points. We choose these points to be 0, 1, and ∞ .
- A Lattès map $\gamma : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is a meromorphic function satisfying $\gamma \circ \phi = \phi \circ [N]$ for some meromorphic function $\phi : E(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ and "multiplication-by-N" $[N] : E(\mathbb{C}) \to E(\mathbb{C})$ where $[N]P = P \oplus \cdots \oplus P$.

Theorem (Ayberk Zeytin, 2021; PRiME 2022)

Assume $\gamma : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is a Lattès map.

- If ϕ is a Belyĭ map, then both γ and $\beta = \gamma \circ \phi$ are Belyĭ maps as well.
- Any Belyĭ Lattès map arises from one of three families:

Elliptic Curve	Belyĭ Map ϕ	Degree of ϕ
$E: y^2 = x^3 + B$	$\phi(x,y) = \frac{\sqrt{B} - y}{2\sqrt{B}}$	$\deg(\phi) = 3$
$E: y^2 = x^3 + A x$	$\phi(x,y) = -\frac{x^2}{A}$	$\deg(\phi) = 4$
$E: y^2 = x^3 + B$	$\phi(x,y) = -\frac{x^3}{B}$	$\deg(\phi) = 6$

Dessin d'Enfants

Assume that $\phi: S \to \mathbb{P}^1(\mathbb{C})$ is a Belyĭ map for a compact, connected Riemann surface S whose critical values are 0, 1, and ∞ . A Dessin d'Enfants is a bipartite graph whose "black" vertices are the preimage $\phi^{-1}(\{0\})$, "red" vertices are the preimage $\phi^{-1}(\{1\})$, and "edges" are the preimage $\phi^{-1}((0,1))$.

Acknowledgements

- Dr. Alex Barrios (Carleton College)
- PRiME 2022 Faculty, Research Assistants, and peers
- Department of Mathematics, Pomona College
- National Science Foundation (DMS-2113782)

Monodromy Groups of Belyi Lattès Maps

Zoë Batterman (Pomona College), Inés Chung-Halpern (Yale University), John Michael Clark (University of Texas at Austin), Edray Herber Goins (Pomona College), and Ebenezer Semere (Pomona College)

Pomona Research in Mathematics Experience (PRiME)

$$\beta(x,y) = \frac{(1+y) (3-y)^3}{16 y^3}$$

4
$$\beta(x,y) = \frac{(x^2+1)^4}{16 x^2 (x^2-1)^2}$$

 $\beta(x,y) = -\frac{x^3 (x^3 - 8)^3}{64 (x^3 + 1)^3}$

Motivating Questions

- These examples of monodromy groups suggest $Mon(\beta)$ and $Mon(\gamma)$ are equal in certain cases. Under which conditions is this true?
- More generally, what is the precise relationship between $Mon(\beta)$ and $\operatorname{Mon}(\gamma)$?

Theorem (PRiME 2022)

Assume $\phi: E(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is Belyĭ map of degree M for an elliptic curve $E: y^2 = x^3 + Ax + B$ satisfying the following two assumptions:

- The group homomorphism $\mathbb{Z}/M\mathbb{Z} \to \operatorname{Mon}(\phi)$ sending $m \mod M$ to $[\zeta^m](x,y) = (\zeta^{2m} x, \zeta^{3m} y)$ is an isomorphism for $\zeta = e^{2\pi i/M}$.
- \bigcirc For each $N = 1, 2, 3, \ldots$, there exists some meromorphic function $\gamma: \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ such that $\gamma \circ \phi = \phi \circ [N]$.

Then we have the following:

- 1 The three families in Zeytin's classification satisfy these assumptions.
- 2 The composition $\beta = \gamma \circ \phi = \phi \circ [N]$ is a Belyĭ map of degree $N^2 M$. Explicitly, $P \mapsto [\zeta^m] P \oplus P_0$ is an automorphism for $P_0 \in E[N]$ and $m \in \mathbb{Z}/M\mathbb{Z}$. In particular, we have the monodromy group

$$\operatorname{Mon}(\beta) \simeq E[N] \rtimes \operatorname{Mon}(\phi) \simeq \left(\frac{\mathbb{Z}}{N\mathbb{Z}} \times \frac{\mathbb{Z}}{N\mathbb{Z}}\right) \rtimes \left(\frac{\mathbb{Z}}{M\mathbb{Z}}\right)$$

 3γ is a Belyĭ Lattès map of degree N^2 with monodromy group

$$\operatorname{fon}(\gamma) \simeq \left(\frac{\mathbb{Z}}{N\mathbb{Z}} \times \frac{\mathbb{Z}}{N\mathbb{Z}}\right) \rtimes \left(\frac{d\mathbb{Z}}{M\mathbb{Z}}\right)$$

where

$$d = [\operatorname{Mon}(\beta) : \operatorname{Mon}(\gamma)] = \begin{cases} M & \text{if } N = 1, \\ 2 & \text{if } N = 2 \text{ and } M \text{ is even, and} \\ 1 & \text{otherwise.} \end{cases}$$

Dessin d'Enfants of γ Belyĭ Lattès Map γ $\gamma(z) = \frac{(z-1)(z+1)^3}{z}$ $\gamma(z) = \frac{(z+1)^4}{16 \, z \, (z-1)^2}$ $\gamma(z) = \frac{z \, (z+8)^3}{64 \, (z-1)^3}$

 $\deg(\phi)$

We proved these results using Galois theory by relating $Mon(\gamma)$ to the largest normal subgroup of $G \simeq \operatorname{Mon}(\beta)$ which is contained in $H \simeq \operatorname{Mon}(\phi)$.

$$L = \mathcal{K}$$

[4] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Volume 106. Second Edition (2009).

How Do We Generate Belyĭ Lattès Maps?

Substitutions	Belyĭ Lattès Map $\gamma(z)$	
$x = (4 z (z - 1))^{1/3}$ y = 1 - 2 z	$\frac{1}{2\sqrt{B}}\left(\sqrt{B}-\frac{\psi_{2N}(x,y)}{2\psi_N(x,y)^4}\right)$	
$x = z^{1/2}$ $y = z^{1/4} (z - 1)^{1/2}$	$-\frac{1}{A} \left(x - \frac{\psi_{N+1}(x,y)\psi_{N-1}(x,y)}{\psi_N(x,y)^2} \right)^2$	
$x = -z^{1/3}$ $y = (1-z)^{1/2}$	$-\frac{1}{B} \left(x - \frac{\psi_{N+1}(x,y)\psi_{N-1}(x,y)}{\psi_N(x,y)^2} \right)^3$	

Sketch of Proof

Explicitly, $\operatorname{Mon}(\gamma)$ is the quotient of $G \simeq E[N] \rtimes \operatorname{Mon}(\phi)$ by

$$(\sigma H \sigma^{-1}) \simeq \left\{ n \in \frac{\mathbb{Z}}{M\mathbb{Z}} \mid [\zeta^n] P_0 = P_0 \text{ for all } P_0 \in E[N] \right\} \simeq \frac{\mathbb{Z}}{d\mathbb{Z}}$$

Future Work

We now understand the relationship between the monodromy groups of the composition $\beta = \gamma \circ \phi = \phi \circ [N]$ and the Belyĭ Lattès map γ for a Belyĭ map $\phi: E(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ and the "multiplication-by-N" map $[N]: E(\mathbb{C}) \to E(\mathbb{C})$.

We wish to generalize and understand the relationship between the monodromy groups of $\beta = \gamma \circ \varphi = \varphi \circ \psi$ and γ for Belyĭ maps $\varphi : E(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ and $\phi: X(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ and an arbitrary isogeny $\psi: E(\mathbb{C}) \to X(\mathbb{C})$ between two elliptic curves E and X.

References

[1] Sage Mathematics Software System. http://www.sagemath.org

[2] Ernesto Girondo and Gabino González-Diez. Introduction to Compact Riemann Surfaces and Dessins d'Enfants. London Mathematical Society Student Texts, Volume 79 (2012).

[3] John Milnor. On Lattès Maps.

https://arxiv.org/pdf/math/0402147.pdf

[5] Ayberk Zeytin. Belyĭ Lattès Maps.

https://arxiv.org/pdf/1011.5644.pdf