Abstract

A rational map $\gamma: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ from the Riemann Sphere to itself is said to be a Lattès Map if there are "well-behaved" maps $\phi: E(\mathbb{C}) \rightarrow$ $\mathbb{P}^{1}(\mathbb{C})$ and $\psi: E(\mathbb{C}) \rightarrow E(\mathbb{C})$ such that $\gamma \circ \phi=\phi \circ \psi$. We are interested in those Lattès Maps which are also Belyi Maps and their associated monodromy groups. This work is conducted as part of the Pomona Research in Mathematics Experience (DMS-2113782).

Elliptic Curves

- An elliptic curve is an equation of the form $y^{2}=x^{3}+A x+B$ where $4 A^{3}+27 B^{2} \neq 0$. Equivalently, it is a non-singular curve of genus one.
Let $S=E(\mathbb{C})$ be the collection of complex numbers x_{0} and y_{0} satisfying $y^{2}=x^{3}+A x+B$ along with the "point at infinity" O_{E}. This is a torus. In particular, it is a compact, comnected Riemann surface.
Let P, Q, and $P * Q$ be points on E which lie on a line. Then the binary operation $P \oplus Q=(P * Q) * O_{E}$ turns $(E(\mathbb{C}), \oplus)$ into an abelian group.

Belyĭ Lattès Maps

- A Bely̌̌ map $\phi: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a meromorphic function defined on a compact, connected Riemann surface S which is ramified over at most three points. We choose these points to be 0,1 , and ∞
A Lattès map $\gamma: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a meromorphic function satisfying $\gamma^{\circ} \phi=\phi \circ[N]$ for some meromorphic function $\phi: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ and multiplication-by- $N "[N]: E(\mathbb{C}) \rightarrow E(\mathbb{C})$ where $[N] P=P \oplus \cdots \oplus P$.

Theorem (Ayberk Zeytin, 2021; PRiME 2022)		
Assume $\gamma: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a Lattès map. - If ϕ is a Belyı̆ map, then both γ and $\beta=\gamma \circ \phi$ are Belyĭ maps as well. - Any Belyĭ Lattès map arises from one of three families:		
Elliptic Curve	Bely Map ϕ	Degree of ϕ
+ B	$\phi(x, y)=\frac{\sqrt{B}-y}{2 \sqrt{B}}$	$\operatorname{deg}(\phi)=$
$E: y^{2}=x^{3}+A x$	$\phi(x, y)=-\frac{x^{2}}{A}$	$\operatorname{deg}(\phi)=4$
$E: y^{2}=x^{3}+B$	$\phi(x, y)=-\frac{x^{3}}{B}$	$\operatorname{deg}(\phi)=6$

Dessin d'Enfants
Assume that $\phi: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a Belyĭ map for a compact, connected Rie mann surface S whese citical values are 0 , and \propto. A Dessin d'Eufants is bipartite graph whose "black" vertices are the preimage $\phi^{-1}(\{0\})$, "red" vertices are the preimage $\phi^{-1}(\{1\})$, and "edges" are the preimage $\phi^{-1}((0,1))$.

Acknowledgements

- Dr. Alex Barrios (Carleton College)
- PRiME 2022 Faculty, Research Assistants, and peers
- Department of Mathematics, Pomona College - National Science Foundation (DMS-2113782)

Monodromy Groups

Assume that $\phi: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a Belyy̌ map of degree M. The monodrom group of ϕ is a subgroup of the symmetric group of degree M as follows: - Label the edges of the Dessin d'Enfants of ϕ using 1 through M.

- Write down the permutation σ_{0} as the product of disjoint cycles found
from reading the labels counterclockwise around each "black" vertex.
- Write down the permutation σ_{1} as the product of disjoint cycles found from reading the labels counterclockwise around each "red" vertex - Generate the group $\operatorname{Mon}(\gamma)=\left\langle\sigma_{0}, \sigma_{1}\right\rangle$ from these permutations.

Examples
Consider $E: y^{2}=x^{3}+1$ and $\phi(x, y)=(1-y) / 2$.

- Denote the Belyí map
$\beta(x, y)=\phi \circ[2]$
$=\frac{(1+y)(3-y)^{3}}{16 y^{3}}$.
Ve compute its monodromy as
$\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}\right\rangle \simeq A_{4}$.
$\sigma_{0}=(176)(2109)(3412)(5811)$ $\sigma_{1}=(123)(456)(789)(101112)$

Denote the Belyí Lattès map

$$
\gamma=\frac{(z-1)(z+1)^{3}}{(2 z-1)^{3}}
$$

so that $\beta=\gamma \circ \phi=\phi \circ[2]$. We compute $\operatorname{Mon}(\gamma) \simeq A_{4}$ as well.

$$
\left.\begin{array}{l}
\sigma_{0}=(4)\left(\begin{array}{ll}
1 & 3
\end{array}\right) \\
\sigma_{1}=(1)(23
\end{array}\right)
$$

Theorem (PRiME 2022

Assume $\phi: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is Bely map of degree M for an elliptic cur $E: y^{2}=x^{3}+A x+B$ satisfying the following two assumptions:

- The group homomorphism $\mathbb{Z} / M \mathbb{Z} \rightarrow \operatorname{Mon}(\phi)$ sending $m \bmod M$ to $\left[\zeta^{m}\right](x, y)=\left(\zeta^{2 m} x, \zeta^{3 m} y\right)$ is an isomorphism for $\zeta=e^{2 \pi i / M}$. - For each $N=1,2,3, \ldots$, there exists some meromorphic function $\gamma: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ such that $\gamma \circ \phi=\phi \circ[N]$.
Then we have the following:
- The three families in Zeytin's classification satisfy these assumptions.
(2 The composition $\beta=\gamma \circ \phi=\phi \circ[N]$ is a Bely̌ map of degree $N^{2} N$. Explicitly, $P \mapsto\left[\zeta^{m}\right] P \oplus P_{0}$ is an automorphism for $P_{0} \in E[N]$ and $m \in \mathbb{Z} / M \mathbb{Z}$. In particular, we have the monodromy group
$\operatorname{Mon}(\beta) \simeq E[N] \rtimes \operatorname{Mon}(\phi) \simeq\left(\frac{\mathbb{Z}}{N \mathbb{Z}} \times \frac{\mathbb{Z}}{N \mathbb{Z}}\right) \rtimes\left(\frac{\mathbb{Z}}{M \mathbb{Z}}\right)$
- γ is a Bely Lattès map of degree N^{2} with monodromy group

$$
\operatorname{Mon}(\gamma) \simeq\left(\frac{\mathbb{Z}}{N \mathbb{Z}} \times \frac{\mathbb{Z}}{N \mathbb{Z}}\right) \rtimes\left(\frac{d \mathbb{Z}}{M \mathbb{Z}}\right)
$$

where

$$
d=[\operatorname{Mon}(\beta): \operatorname{Mon}(\gamma)]= \begin{cases}M & \text { if } N=1, \\ 2 & \text { if } N=2 \text { and } M \text { is even, and } \\ 1 & \text { otherwise. }\end{cases}
$$

Examples of Dessins d'Enfants of Belyĭ Maps and Belyı̆ Lattès Maps

$$
\operatorname{deg}(\phi) \quad \text { Bely̆ Map } \beta=\phi \circ[2]
$$

$$
\text { Dessin d'Enfants of } \beta
$$

Bely̌̌ Lattès Map
Dessin d'Enfants of

$$
\beta(x, y)=\frac{(1+y)(3-y)^{3}}{16 y^{3}}
$$

$\gamma(z)=\frac{(z-1)(z+1)^{3}}{(2 z-1)^{3}}$

$$
\beta(x, y)=\frac{\left(x^{2}+1\right)^{4}}{16 x^{2}\left(x^{2}-1\right)^{2}}
$$

$$
\gamma(z)=\frac{(z+1)^{4}}{16 z(z-1)^{2}}
$$

How Do We Generate Belyĭ Lattès Maps? $\underline{\operatorname{deg}(\phi)}$ Substitutions Belyǐ Lattès Map $\gamma(z)$

$$
\begin{array}{llr}
\hline 3 & \begin{array}{ll}
x & =(4 z(z-1))^{1 / 3} \\
y & =1-2 z
\end{array} & \frac{1}{2 \sqrt{B}}\left(\sqrt{B}-\frac{\psi_{2 N}(x, y)}{2 \psi_{N}(x, y)^{4}}\right) \\
4 & \left.\begin{array}{l}
x
\end{array}\right)=z^{1 / 2} \\
y & =z^{1 / 4}(z-1)^{1 / 2} & -\frac{1}{A}\left(x-\frac{\psi_{N+1}(x, y) \psi_{N-1}(x, y)}{\psi_{N}(x, y)^{2}}\right)^{2} \\
6 & x & =-z^{1 / 3} \\
y & =(1-z)^{1 / 2}
\end{array} \quad-\frac{1}{B}\left(x-\frac{\psi_{N+1}(x, y) \psi_{N-1}(x, y)}{\psi_{N}(x, y)^{2}}\right)^{3} .
$$

Sketch of Proof

We proved these results using Galois theory by relating $\operatorname{Mon}(\gamma)$ to the largest normal subgroup of $G \simeq \operatorname{Mon}(\beta)$ which is contained in $H \simeq \operatorname{Mon}(\phi)$.

Explicitly, $\operatorname{Mon}(\gamma)$ is the quotient of $G \simeq E[N] \rtimes \operatorname{Mon}(\phi)$ by

$$
\bigcap_{\sigma \in G}\left(\sigma H \sigma^{-1}\right) \simeq\left\{\left.n \in \frac{\mathbb{Z}}{M \mathbb{Z}} \right\rvert\,\left[\zeta^{n}\right] P_{0}=P_{0} \text { for all } P_{0} \in E[N]\right\} \simeq \frac{\mathbb{Z}}{d \mathbb{Z}} .
$$

Future Work
We now understand the relationship between the monodromy groups of the composition $\beta=\gamma \circ \phi=\phi \circ[N]$ and the Belyĭ Lattès map γ for a Belyĭ map $\phi: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ and the "multiplication-by- N " map $[N]: E(\mathbb{C}) \rightarrow E(\mathbb{C})$. We wish to generalize and understand the relationship between the monodromy groups of $\beta=\gamma \circ \varphi=\varphi \circ \psi$ and γ for Belyi maps $\varphi: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ and $\phi \cdot X(C) \rightarrow \mathbb{F}$ (C) and X. two elliptic curves E and X

References
1] Sage Mathematics Software System
ttp:// www. sagemath. org
[2] Ernesto Girondo and Gabino González-Diez. Introduction to Compact Riemann Surfaces and Dessins d'Enfants. London Mathematical Society
Student Texts, Volume 79 (2012) Student Texts, Volume 79 (2012).
[3] John Milnor. On Lattès Maps.
https://arxiv.org/pdf/math/0402147.pdf
[4] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Volume 106. Second Edition (2009)
5] Ayberk Zeytin. Belyĭ Lattès Maps.
https://arxiv.org/pdf/1011.5644.pdf

